### This is the analysis of NIEHS2 dataset in R ### Starts with the data from Lee with spot coordinates # read in the maanova raw data raw <- read.madata("F:/cui/Research/MicroarrayAnalyses/NIEHS2/data_edit/dataEdit_anovaInput_noname.txt", header=FALSE, designfile="F:/cui/Research/MicroarrayAnalyses/NIEHS2/data_edit/design2.txt",spotflag=FALSE,metarow=4, metacol=4,row=5, col=6,cloneid=2, pmt=7) # reload the modified (2 slides regridded) data raw <- read.madata("F:/cui/Research/MicroarrayAnalyses/NIEHS2/data_edit/anovaInput_nonameEdit.txt", header=FALSE, designfile="F:/cui/Research/MicroarrayAnalyses/NIEHS2/data_edit/design2.txt",spotflag=FALSE,metarow=4, metacol=4,row=5, col=6,cloneid=2, pmt=7) # load the vector of row index with missing data rowvec <- scan(file="F:/cui/Research/MicroarrayAnalyses/NIEHS2/data_edit/rowvec.txt", sep="\t") # remove the rows with missing data raw$data <-raw$data[setdiff(1:2085,rowvec),]; raw$cloneid <-raw$cloneid[setdiff(1:2085,rowvec)]; raw$metarow <-raw$metarow[setdiff(1:2085,rowvec)]; raw$metacol <-raw$metacol[setdiff(1:2085,rowvec)]; raw$row <-raw$row[setdiff(1:2085,rowvec)]; raw$col <-raw$col[setdiff(1:2085,rowvec)]; # convert data into raw from log2 transformed raw$data <- 2^(raw$data) # modify metarow and metacol because they only contain block number raw$metarow[which(raw$metarow==2)] <- 1 raw$metarow[which(raw$metarow==3)] <- 2 raw$metarow[which(raw$metarow==4)] <- 2 raw$metacol[which(raw$metacol==3)] <- 1 raw$metacol[which(raw$metacol==4)] <- 2 save(raw, file="F:/cui/Research/MicroarrayAnalyses/NIEHS2/analysis2/raw.RData") # riplot riplot(raw) graphics.off() data <- createData(raw, 1) ratio <- make.ratio(data, norm.std=FALSE) arrayview(data, ratio=ratio, zlim=c(-1,1)) # there is some heterogeneity in some of the arrays, mainly in array number # 22 and higher. The most obvious one is block 1 and 2 read and 3,4 green. gridcheck(raw, 1,2) # array 3 block 2 is completely off. (corrected in the regridded data) # array 10 block 1 and 2 are not great.(not corrected in the regridded data) datas <- smooth(data, method="rlowess") graphics.off() ratio <- make.ratio(datas) arrayview(datas,ratio=ratio, zlim=c(-1,1)) # array 14 still has bright bottum band.